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For my students

Who have taught me so much



We live, not by things, but by the meanings of things.

- Antoine de Saint-Exupéry,  
Generation to Generation
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Since the 1990s, the hard sciences have been undergoing a revolution. As sci-
entists came more and more to study complex systems (such as the environment, 
stars and galaxies, atoms and electrons, cells and molecules, the human microbi-
ome, the global economy, and the human brain), they realized that the problems 
they faced were far too hard and complex to be solved by any one discipline and 
by any single method. Scientists began to define what they did and who they 
were, not in terms of their discipline or sub-discipline per se, but in terms of 
a hard problem or big challenge they faced with others not in their own disci-
pline. They began to work on complex systems with specialists outside their areas 
and to develop a new common language and shared methods. What resulted is 
not inter-disciplinarity (often just a form of academic parallel play), but a new 
cross-functional integrated approach to science. 

A similar trend has emerged over the same span of time in high-tech work-
places, where work is now organized around deeply skilled teams that share a 
broad understanding of each other’s specialties and can integrate their expertise 
to solve big and hard problems. These advances in science and at work have been 
facilitated, in part, by the growth of new digital technologies, Big Data, and new 
data-mining techniques. 

Today, studying the brain takes chemists, physicists, biologists, psychologists, 
computer scientists, mathematicians, philosophers, and even graphic artists who 
together become “neural scientists” or, at least, contributors to “neural science.” 
And, recently, these “brain people” have discovered we humans have a second 
brain in our gut and so they now have to talk to “gut people” as well—who would 
have thought! To make a video game today, it takes game designers, program-
mers, directors, engineers, visualization experts, content experts, motion-capture 
experts, artists, and writers, among others.

This revolution has not gone nearly as far in education, psychology, and much 
of the social sciences. The reason is that these areas are really not “hard sciences,” 
but “hard hard sciences.” They are areas that face hard problems where human 
beings are in the mix. Human beings, as individuals and as groups, are complex 
systems in their own right. Put them inside other complex systems and complex-
ity grows exponentially. 
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The nasty problem humans (unlike atoms, cells, or stars) add to complexity 
is meaning-making. Human meaning-making is a computationally intractable 
problem (note how search engines clearly know nothing about meaning; they 
just know correlations among words). No machine yet can understand, let alone 
make, meaning in the way humans do (and the good bet here is no machine ever 
will).  Scientists who study their fellow humans are interpreting beings that can 
interpret right back and can change their interpretive frameworks in the bat of an 
eye. It is as if the cells in a petri dish could plan with each other how to surprise 
the scientist studying them.

David Williamson Shaffer is, in this book, ringing the bell to announce the 
revolution is coming to education and the social sciences. A polymath if there 
ever was one, Shaffer has worked with some of the most diverse scientists and 
colleagues I know. This book is very much the result of that team work. While 
the signs on the doors in Shaffer’s department say things like “psychology” and 
“learning science,” he was trained at the famed Media Lab at the Massachusetts 
Institute of Technology and has the revolution in his blood. He doesn’t just want 
to contribute to education, psychology, learning science, and understanding of 
humans as social actors, as he has done for years now; he wants to remake these 
disciplines, integrate them, discover new language and new methods, and bring 
the revolution home.

Shaffer integrates big data, data-mining, discourse analysis, social interaction-
ism, cognition, learning science, statistics, and ethnography into a brand-new 
integrated human science. We see clearly how the teams of the future will need 
to be put together. We see, finally, a way to take on the hard hard humans-in-
the-mix problems here. We see how to make science where we have too often 
been saddled by a stale trade-off between ungeneralizable “qualitative” anecdotes 
and vapid “quantitative” p-values with too little real power, save to furnish pub-
lication mills. Here we get numbers and meaning both, and they don’t fight 
each other, rather they give birth to truly new ideas and innovative ways out of 
our old ruts. Those interested in teaching, learning, meaning-making, culture, 
social interaction, and human development will find here the first shot in a real 
revolution. It’s a wild ride and a great read to boot.

— James Paul Gee
 Mary Lou Fulton Presidential Professor of Literacy Studies
 Arizona State University
 March 2017
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Kirk’s legacy

“Captain’s log, Stardate 3614.9”
The plot device of my childhood was the captain’s log. Like the national anthem 

at the beginning of a baseball game, each episode of my favorite television show, 
Star Trek, began with a log entry from James T. Kirk, the swashbuckling captain 
of the starship Enterprise. Kirk dictated a description of the ship’s mission and 
stored it in the ship’s computer, with the audience conveniently listening in to the 
captain’s monologue as a voice-over. 

In an episode in the second season, “Wolf in the Fold,” a mysterious string of 
murders takes place on a planet the Enterprise is visiting, and one of the crew is a 
suspect. Kirk’s log introduces the problem:

Captain’s log, Stardate 3614.9. Planet Argelius Two. While on ther-
apeutic shore leave, Mister Scott has fallen under suspicion of having 
brutally murdered an Argelian woman. The chief city administrator, 
Mister Hengist, has taken charge of the investigation, but has learned 
little of value. 

Even as a child I knew the log entries were just a way to give the viewer infor-
mation about the story to come without using a narrator or having one character 
explain to another what was happening. But what I didn’t realize at the time 
was that this simple plot device would be one of the most prescient of Star Trek ’s 
predictions for the future.

Science fiction stories from the past have long been a source of inspiration for 
actual science in the present. Jules Verne and H.G. Wells both wrote about space 
travel a century before the first Apollo moon landings. In Verne’s 1865 novel De 
la terre à la lune (From the Earth to the Moon), astronauts were shot in a hollow 
sphere from a cannon. The Martian invaders in Wells’ 1897 serial novel The War 
of the Worlds used the same method to get from Mars to the Earth—although 
later in Wells’ 1901 The First Men in the Moon an inventor and a businessman 
develop a more elegant method using “cavorite” to escape from Earth’s gravity.1 

Two years after War of the Worlds was published, a 17-year-old boy in Worces-
ter, Massachusetts, wrote in his diary: “How wonderful it would be to make 
some device which had even the possibility of ascending to Mars.” The boy was 
Robert Goddard, a pioneer in the science of rocketry who developed 214 patents 
for rocket engines, parts, and techniques. His first launch in 1926 has been 



compared to the first flight of the Wright brothers at Kitty Hawk. Goddard 
developed the first liquid-fuel rocket, as well as many of the techniques still used 
today to stabilize and steer rockets in flight. 

Thirty-three years after describing in his journal the dream of going to Mars, 
Goddard wrote about his passion for the field of rocketry to Wells, the author 
who had inspired his life’s work. Later, Goddard became the director of the 
American Rocket Society—whose first president was the editor of the science 
fiction magazine Science Wonder Stories. 

In other words, fictional stories of space travel starting in the 19th century 
inspired the science of rocketry and space exploration in the 20th. But the influ-
ence of fiction on science runs deep. James Bond first introduced the public to 
global positioning system (GPS) navigation in the 1964 movie version of Gold-
finger in 1964 and underwater cameras in the 1965 film Thunderball. And in the 
early 1970s, when telephones were still connected to the network with cords, 
two telecommunications companies, Motorola and the giant AT&T, battled 
for market share, when a Motorola engineer named Martin Cooper stumbled 
on a Star Trek episode. “People are fundamentally, inherently mobile,” he said, 
describing the incident years later. “They never, never would want to be leashed, 
tied to a desk or to their home or to their office if they have a choice. … And 
suddenly, there’s Captain Kirk talking on his communicator.” From this moment 
of inspiration, Cooper went on to develop the first cell phone, and it is no coin-
cidence that until 2009 when smartphones came into wide use, the most popular 
phones—so-called “flip” phones like Motorola’s famous RAZR—looked much 
like Kirk’s communicator.2 

Star Trek gave the world a preview of personal computers, tablets, portable 
computer memory, biometric scanning, and wireless headphones. So inspira-
tional was the technology of Star Trek that the original model of the starship 
Enterprise hangs in the Boeing Milestones of Flight Hall at the Smithsonian Air 
and Space Museum. And long before William Gibson coined the term cyberspace 
in his short story “Burning Chrome,” and Tim Berners Lee and his colleagues at 
CERN, the European Organization for Nuclear Research, invented the World 
Wide Web—even before the engineers at Bolt Beranek and Newman developed 
the first working network of computers—Star Trek provided a vision of what we 
now call cloud computing.3 
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The computers on the Enterprise stored a vast record of the knowledge of the 
species of the known galaxy that the crew could consult for the asking—it being 
more dramatically interesting to hear a character ask a question directly rather 
than watch someone type it into a computer. In “Wolf in the Fold,” the myste-
rious murders are solved when the crew conducts a seance (yes, really) and the 
spirit medium uses the word “redjac.” The ship’s science officer, the brilliant Mr. 
Spock, then uses what we now think of as a simple Google search:

SPOCK: Computer, linguistic bank. Definition of following word: 
“redjac.” 

COMPUTER: Working. Negative finding. 

SPOCK: There is no such word in the linguistics bank? 

COMPUTER: Affirmative. 

SPOCK: Scan all other banks. 

COMPUTER: Working. Affirmative. A proper name. 

SPOCK: Define.

COMPUTER: Redjac. Source Earth, nineteenth century. Language, 
English. Nickname for mass murderer of women. Other Earth syn-
onym, Jack the Ripper. 

One “Google” search later, the crew discovers the murderer is in fact (gasp) 
Mr. Hengist, the administrator who was in charge of the investigation in the 
first place!

What made Star Trek ’s captain’s log so prescient, though, was that it was part 
of a computerized record of everything that happened on the ship. In the episode 
“Court Marshal,” Kirk is accused of causing the death of a member of the crew, 
and the evidence against him is a video recording of his actions that day, stored 
in the computer. Naturally, it turns out that Kirk was framed: The computer’s 
files had been altered. 

“Court Marshal” aired two years before the first computers were linked 
together in what would eventually become the Internet, when data was still stored 
on punch cards, which looked like stacks of index cards where each card had one 
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line of information on it. But on the Enterprise, everything that everyone said 
and did—all their actions, their decisions, and their explanations—everything 
was recorded and could be examined and re-examined, searched and sorted and 
analyzed.4

In 1967, Star Trek had already imagined the world of Big Data that we live in 
today.

Data, data, everywhere
It seems unimaginable in a world where almost everyone carries a digital camera 

as part of the phone in his or her pocket, but before 1900 almost no one took 
pictures at all. In that year, the Eastman Kodak Company made the first popular 
camera, the Brownie, and by 1905 (only five years later) 10 million people in the 
United States were taking “snapshots.” Before the Brownie, though, most people 
in the US—indeed most people in the world—lived their entire lives without 
ever having their picture recorded. Goods and services were traded in barter or 
paid for with cash. Notes in a family bible might record births and deaths. But 
unless a person made a concerted effort to keep a diary or write and save letters, it 
was entirely likely that the only permanent trace of his or her life would be a few 
official records like marriage certificates, an entry in the census every 10 years if 
he or she lived in the United States, and a name on a tombstone.5

Now, though, we live among the towering mounds of data that accumulate as 
we move through life in the digital age. Even if we never post an entry to the 
modern day captain’s logs of Facebook or Twitter or Snapchat or Instagram, 
every time we swipe our credit card, send an email, search for information, make 
a phone call, save a picture, or even walk down the security camera-filled streets, 
we create digital footprints that mark our path. 

Eric Schmidt, chairman of Google’s parent company, Alphabet, estimates the 
world records as much information in two days as was created from the beginning 
of written records 40,000 years ago through 2003. Nearly one third of the people 
on the planet has at least one social network account. Every minute they make 4 
million posts, and upload 400 hours of video to YouTube. Every day, we create 
five exabytes of data, or enough to fill the hard drives of 5 million computers: 
a gigabyte of data for every man, woman, and child who is connected online. 
Two-thousand books worth of information, or 160 digital pictures, per person 
per day.6
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In the digital age we are all Sherlock Holmes and cyberspace is our Dr. 
Watson, chronicling our every move; or if you prefer, we are Samuel Johnson to 
the Internet’s Boswell.

Star Trek was prescient in predicting that our lives would be automatically 
and continuously recorded, although as is often the case with predictions, the 
consequences were not entirely clear. For one thing, the characters on Star Trek 
never seemed particularly worried about privacy. The world has quickly learned 
that Big Data is an invitation to Big Brother, whether in the form of the National 
Security Agency recording phone calls and screening email, Facebook choosing 
what it shows us to change our moods, or Google tracking our searches and the 
web pages we visit to decide which advertisements to show us.7

Nor, of course, was there much concern on the Enterprise about data security. 
Few people worried in the fictional future about problems that we encounter 
all the time in the age of Big Data: pictures being stolen, credit card numbers 
secretly recorded, websites hacked, and passwords compromised. In one noto-
rious incident in 2014, a whole Twitter account was stolen from its user in an 
elaborate extortion scheme, and such incidents are sadly becoming almost com-
monplace today.8

Thefts certainly happened in the universe of Star Trek. Notable “hacks” include 
an alien carrying off Mr. Spock’s brain to run the massive computer controlling 
the underground ecosystem of the far-off planet Sigma Draconis VI, and the 
Bynars gaining control of the Enterprise computer to hijack the ship. But the 
crew of the Enterprise overall seemed remarkably unconcerned about passwords, 
identity theft, online bullying, and other day-to-day worries of our own digital 
age.

The optimist in me likes to think that the reason data privacy and security 
are not big issues on Star Trek is that by the 23rd century these problems will be 
mostly resolved. Presumably biometric scanning and 200 years of progress on 
encryption algorithms will make data much harder to steal.

Of course privacy and protection of data are clearly important aspects of any 
ethical research—and really any ethical behavior, although sadly corporations 
and governments do not always see things that way. We’ll touch on these issues 
in what follows, but the focus of this book is less on whether it is OK to use one 
or another kind of Big Data than it is on what to do with the data once you have 
it. Because although Star Trek provides a very clear image of the Big part of Big 
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Data—a world where everything everyone does is automatically recorded—the 
creators of Star Trek did not really foresee the limitations of Data itself.

Here is a simple example of what I mean.
Imagine I tell you that a certain person—let’s just call her “Cassie”—used a 

credit card to buy $13.73 worth of unleaded gasoline on Saturday at 4:14pm in 
Gulfport, Mississippi. A piece of data about Cassie’s life. OK, now, what sense 
would you make of it? Could you conclude that Cassie lives in Gulfport? Or in 
Mississippi? Or even in the United States? Probably not. She could be visiting 
Mississippi. Maybe on business. Maybe for vacation. Or maybe she isn’t even 
there at all. Maybe someone stole her credit card. Even assuming that her card 
wasn’t stolen, would you know she owns a car? Maybe she is renting a car. Or 
maybe she borrowed a car. Or maybe Cassie was taking a trip with a friend in the 
friend’s car and paying for the gas.

So the first thing to notice is that it is almost impossible to conclude anything 
from this single piece of data. But let’s imagine that we have some more data. 
Cassie’s birth certificate is from 1996 in Austin, Iowa. She also purchased gas in 
Lake Charles, Louisiana, at 11:52am on Saturday, and in College Station, Texas, 
at 7:01am earlier that morning. Now, if you took the time to plot those points on 
a map, Cassie would certainly seem to be driving from Texas, through Louisiana, 
and into Mississippi. And if I told you that this Saturday was a day at the end of 
March during Texas A&M University’s spring break … well, if you remembered 
that College Station is the home of Texas A&M, you might guess that Cassie 
is a college sophomore driving to Florida for vacation. You could not be sure, of 
course. There are an infinite number of other possible explanations. But if you 
accumulated more and more data consistent with your guess, you would be more 
and more confident about who Cassie was and what she was doing.

There are a number of technical ways of describing this kind of “guessing 
informed by data.” Depending on how we were actually looking at the data we 
might describe the idea that Cassie is driving to Florida for spring break as a 
hypothesis or an inference. But whatever technical term we use, the point is the 
same: We are trying to make sense of the data, and the way to do that is to try to 
understand what is going on. 

Until we do that—until we come up with an explanation for what we think is 
going on—the data itself is meaningless. Once we start to understand what the 
data means we actually transform it: the data becomes information that is part of 
a story about something that is happening in the world (or that has happened, or 

7 Chapter 1



that is likely to happen). All of which is just to say that actually the Internet is 
neither Dr. Watson nor Dr. Boswell at all. It is not telling the story of our lives. 
Rather, Big Data is like a medieval chronicle, recording disconnected details. We 
need another set of tools to make sense out of data. We need a method to create 
meaning from the exabyte mountains in which we travel.9

Information is always the combination of data and meaning, and at the most 
basic level this book is about how we can reliably and systematically convert 
Big Data into Big Information—and how we can use Big Information to get 
Big Understanding. It is about how we can use the incredible volume of data 
that computers let us collect without making superficial assumptions that lead to 
trivial or even misleading conclusions about what data tells us.

Pretty little data all in a row

The good news, of course, is that the same technological advances that create 
Big Data give us the tools to analyze it. Computers do not just store details about 
our lives; they can also examine those details and look for patterns. Computers 
are not overwhelmed by the mountains of data that we produce every day—
although, to be fair the mountains are so vast that most computers can only 
handle one slope of a mountain at a time.

The term often used for this kind of digging for patterns in mountains of data 
is, appropriately enough, data mining. In the field of education, for example, an 
entire academic journal publishes articles about the use of computers to search 
through the piles of data collected in computer-based education: things like 
computer games, massively open online courses (better known as MOOCs), 
computer-based tests, and the like. It is called, not surprisingly, the Journal of 
Educational Data Mining. There is an educational data mining conference, run 
by the International Educational Data Mining Society. But there are also more 
general places where researchers write about how to find patterns in large collec-
tions of data: the Journal of Data Mining, for example, or the journal Data Mining 
and Knowledge Discovery.
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The basic idea of data mining is actually pretty simple, even if some of the 
mathematical details are complex: You look for similarities in different sets of 
numbers. For example, here are two sets of numbers:

Height Weight
72 161
70 152
67 150
66 149
73 162
70 156
67 145
69 154
74 167
78 170

One set of numbers is the height (in inches) of 10 people, and the other set is 
the weight (in pounds) of the same people. And the question is, what would it 
mean to say that these two different sets of numbers are in some way similar? 

Mathematically, we could compare these two sets of numbers in many ways. 
Some methods are more sophisticated than others, but one easy thing to do is 
just graph the height and weight of each person we have measured. That would 
look something like this:

Figure 1.1  The relationship of height and weight in 10 hypothetical men.

9 Chapter 1



On this graph, each point represents one of the people  whose height and 
weight we measured, and it is pretty easy to see that the points make a kind of 
ragged line across the graph. 

Wait! That’s a pattern!
The points make a line because there is a relationship between a person’s height 

and his or her weight. In general, people who are taller weigh more than people 
who are shorter. Of course, the “in general” part of that last sentence is critical. 
There are plenty of exceptions: people who are very tall and skinny, or people who 
are short but weigh a lot for their height. That is why the line looks ragged or 
imprecise. And of course the real “line” that relates height and weight is actually 
quite a bit more ragged.10

The mathematical relationship between height and weight was first quantified 
in the mid 19th century by Belgian statistician Adolphe Quetelet. Quetelet was 
one of the founders of the social sciences. His most famous work, Sur l’homme et 
le développement de ses facultés (On Man and the Development of his Faculties) 
published in 1835 was about what he called l’homme moyen, or the average man. 
Quetelet imagined the average man as a fictitious person whose characteristics 
were the mathematical average of everyone in society—something like the Half 
Boy whom Milo meets in the Phantom Tollbooth. The Half Boy is the .58 of a 
child in the average family that has 2.58 children, and therefore is the only one 
who can drive the three tenths of the average family’s 1.3 automobiles.11 

One of the chapters of Quetelet’s Treatise of Man examined changes in height 
and weight as people get older, as well as the relatively stable relationship between 
height and weight once people reach adulthood. Based on this work, Quetelet 
developed a measure of the amount that a person is above or below the “normal” 
weight for his or her height, called the Quetelet index for many years. Today we 
use a similar formula, body mass index, or BMI, to determine whether a person 
is too heavy for his or her height (that is, of he or she is overweight) or if someone 
is too light for his or her weight (which might suggest malnutrition, problems 
with digestion, or an eating disorder). 

The statistical term for this kind of relationship between two things—in this 
case how much people weigh and how tall they are—is a correlation. That is just 
a mathematical way of saying that when height goes up, all other things being equal, 
weight goes up as well. Interestingly, and somewhat distressingly, ideas about 
correlation (and many other statistical ideas) actually arose from measures like 
Quetelet’s Index and more generally in the late 19th century from the field of 
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anthropometry, the statistical analysis of the human mind and body. Anthropom-
etry, also called biometry, was inspired by Charles Darwin’s theory of evolution 
by natural selection. Led by Darwin’s cousin Francis Galton, and later by the 
British statistician Karl Pearson, biometricians tried to use statistics to determine 
who was “fit” and who was not. The idea of statistical correlation was born and 
bred, in other words, in the service of eugenics: to understand the differences 
between the “weak and feeble” and the “better stocks” as a way to get an advan-
tage in the struggle for survival between races and nations.12 

Along the way, Pearson and others created some of the key concepts in modern 
statistics, including Pearson’s r, which measures the strength of a correlation. So 
in our example above, Pearson’s r would tell us how strongly height and weight 
are related to one another in the group of people we measured. If Pearson’s r 
(usually just referred to as r because it is so commonly used) is 1, the relationship 
between the two sets of numbers is perfect: In this case, when height goes up so 
does weight. If r = -1 the relationship is perfectly backward: When height goes 
up, weight goes down. Values for r range from 1 to -1—from perfectly correlated 
to inversely correlated and everything in between. When r = 0 there is no rela-
tionship at all.13 

In our little collection of height and weight data, the correlation has r = .95, 
which is very high, and explains why the points look so much like a line. In data 
drawn from one actual group of more than 500 people real people who were in 
good shape, the correlation between height and weight was closer to r = .70. That 
is still a relatively high correlation, but there is more variation, so the line would 
look more jagged.14

At this point you might be wondering why Pearson’s r is so important. After 
all, the heights and weights line up quite nicely in our little example. We can see 
the pattern without calculating any fancy statistics. But not every pattern is quite 
so easy to see. 
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Let me give you another two sets of numbers:

Set 1 Set 2
7 8
2 4
9 6
4 7
4 3
5 2
8 4
6 4
1 1
8 9

Once again we could look for a pattern by creating a graph, and once again the 
points for Set 1 and Set 2 form a kind of line. The line is a little more imprecise 
this time, so I added an actual line to the graph that approximates the underlying 
relationship between the two sets of numbers.

Figure 1.2  The relationship of two arbitrary sets of numbers 
where Pearson’s r = .60.
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The points in this second graph look more ragged than in the first graph 
because for this correlation r = .60, which is lower than r = .95 in the first graph. 
Actually, to be precise, r is lower in the second graph because the points are not 
as well aligned: The r value describes the strength of the correlation. Pearson’s r 
is not the reason the graph looks ragged, it is a measure of how strong the pattern is. 
In fact, even a relatively strong mathematical relationship might be hard to see by 
eye alone. The graph below has a correlation with r = .50. That may not seem like 
a very strong relationship, but to put that in perspective, some studies suggest 
income and happiness are correlated with r = .50. People with more money tend 
to be happier, although the relationship is not perfect because a lot of things can 
make you unhappy if you are rich or happy if you are poor. Money alone can’t buy 
happiness, but there clearly is some connection between the two.15

Figure 1.3  The relationship of two arbitrary sets of numbers 
where Pearson’s r = .5.

Without a line to illustrate the relationship it is pretty hard to see. Which 
is part of the reason that Pearson’s r is useful: it helps find patterns that are 
hard to see. There are many other ways to measure the strength of a pattern, of 
course. And like Pearson’s r, many of the methods for quantifying the strength 
of a pattern are useful because computers are much better at calculating and 
comparing numbers than they are at deciding whether something does or does 
not look like a line. 
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Being able to measure the strength of a pattern makes it possible to use com-
puters to analyze the Big Data that they collect. We can feed a computer data 
and let it search for patterns by using correlations and other statistical tests to 
measure how strongly one kind of data is related to another. The science of data 
mining is the use of statistics to find relationships hidden in massive collections 
of data—the modern descendant in method, though hopefully not in spirit, of 
the eugenics movement a century before the birth of the Internet.

Mining shrimp

There is a problem with this kind of data analysis, though, which always 
reminds me of a riddle my father told me when I was a child:

How do you tell the live shrimp from the dead shrimp in a bucket of shrimp?

The answer, of course, is: 

Throw them against the wall and the ones that say “Ouch!” are alive.

To be fair to my father, the original joke was funnier when he told it, I suspect 
because it was more scatological. But more to the point here: Why is looking for 
relationships by using statistical tests to measure the strength of patterns like throwing 
shrimp against a wall? 

To see why, consider for a moment the last set of numbers that I gave you. It 
was relatively easy to find a correlation in the data, to measure the correlation, 
and to conclude that there was a relationship between the two sets of numbers. 
But here is the thing: I did not say anything about what those numbers mean! 
So yes, we could use statistics to find a pattern, but without knowing what the 
numbers represent or where they came from, the pattern is meaningless.

OK. Allow me to remedy that problem:

The first string of numbers (7, 2, 9, 4, 4, 5, 8, 6, 1, 8) represents the 
number of cherry tomatoes I collected on day in August last year from 
each of 10 tomato plants in our garden. I collected 7 from the first plant, 
2 from the second plant, and so on.
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The second string of numbers (8, 4, 6, 7, 3, 2, 4, 4, 1, 9) represents the 
height in Lego blocks of the beds my daughter built for her Polly Pocket 
dolls in a “setup” she made in the basement on the same day. The first 
doll’s bed was 8 Lego bricks tall; the second doll’s bed was 4 bricks tall; 
and so on.

On the same day, in the same house, two seemingly unconnected things were 
related to one another. More than that, the two things—the number of tomatoes 
on my plants and the number of Legos in my daughter’s doll beds—were not just 
related to one another, but related to one another quite strongly (r = .60). They 
were related more strongly than income influences happiness (r = .50), although 
less strongly than height is related to weight among physically fit people (r = .70).

But now let us make two observations about what just happened. First, this 
example illustrates the power of data mining to find a relationship where we 
might never have expected to find one—and not only to find a relationship, but 
to show us the strength of the pattern in the data. And even more than that, 
to compare the strength of this unexpected relationship to other patterns and 
connections in the world. This is just a small, small example. But it shows very 
clearly what statistical methods can do if they are applied to data. It is easy to 
imagine what patterns we might find if and when we mine the mountains of data 
generated by computers in the age of the Internet.

So that is the first point: Data mining has the power to find new and unexpect-
ed relationships in Big Data.

But there is a second point that is actually more important to be made about 
this example: This statistical analysis found a relationship that is completely 
meaningless. It would be extremely strange indeed if somehow there was a con-
nection between the number of cherry tomatoes in my garden and the number 
of Lego bricks my daughter used in her doll beds on any particular day. In fact, 
it would even be a little strange to discover that my daughter had somehow (con-
sciously or unconsciously) made the same number of doll beds as tomato plants 
in our yard—or equally strange, that I deliberately chose to plant one tomato 
vine for each of my daughter’s Polly Pocket doll. One of these things might have 
happened purely by chance, but it is hard to imagine this pattern has any more 
meaning than that.

In fact, the sheer absurdity of the idea that this pattern is meaningful at all 
is easy to see if we think about how the data was organized in the first place. 
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There is no obvious order for counting tomato plants: Even if the plants are in a 
row, you could start counting at either end. Similarly, once a “setup” is made, it 
can be pretty hard to decide which doll bed came first and which one last: Like 
everything else in the setup, beds are moved around, changed, taken apart, and 
rebuilt as play goes on and the story develops and changes.

To see why this matters, we can rearrange the order of the doll beds. Instead of 
the heights being 8, 4, 6, 7, 3, 2, 4, 4, 1, and 9, we could order them 4, 8, 4, 3, 6, 
4, 1, 7, 2, and 9. Same numbers (one each of the numbers 1, 2, 3, 6, 7, 8, and 9, 
and three 4s) but in a different order. Now the data looks like this:

Figure 1.4  The relationship of the two sets numbers used in Figure 2, 
but with the numbers reordered.

With this new ordering, there is no easily discernible pattern. Indeed, the 
tomato plants and doll beds now have almost no correlation at all. Pearson’s r = 
.01, and as you may recall Pearson’s r is always a value between -1 and 1, with a 
value of 0 indicating no relationship at all. On that scale, r = .01 is about as close 
to no pattern as you are likely to get.

This admittedly cartoonish example of data mining illustrates the critically 
important principle of GIGO or garbage in, garbage out. The term GIGO goes 
back to the early days of computing. It first appeared in a newspaper article in 
1963 about the Internal Revenue Service of all things. GIGO describes what 
happens when someone enters bad data into a computer program: If you type in 
something that does not make sense, the answer you get back from the computer 
will not make sense either.16
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Now obviously real data mining techniques are quite a bit more sophisticated 
than this example. And of course real data mining uses collections of data with 
many more than 10 points of data in each of two sets. But unfortunately the 
tomato/doll bed problem is not as far removed from real data mining as you 
might think. Don’t believe me? Here’s what Chris Anderson, the editor-in-chief 
of Wired magazine wrote in a famous 2008 column:

Petabytes [of data] allow us to say: “Correlation is enough”…. We can 
analyze the data without hypotheses about what it might show. We can 
throw the numbers into the biggest computing clusters the world has 
ever seen and let statistical algorithms find patterns where science can-
not.17

In other words: Throw the doll beds and tomatoes and cost of gas and people’s 
ages and income and weight and height all into one big hopper with anything 
else you have and look at the patterns. 

The ones that say “Ouch!” are alive.
This example, in other words, is very much at the heart of the use—and 

abuse—of statistics for data mining: If you put nonsense in, you get nonsense 
out. And this is even before we deal with the problem of where the data comes 
from in the first place, and how it gets collected. Why was I counting doll beds 
and tomatoes to begin with? Whose height and weight are being measured, by 
whom, when, and for what purpose? 

If these seem like silly objections, consider that Lawrence Kohlberg, who more 
or less founded the field of moral psychology with his work on stages of moral 
development, based his framework on studies with male participants. It was not 
until 20 years after Kohlberg’s original work that psychologist Carol Gilligan 
pointed out the problem: Kohlberg’s tools for measuring moral development, 
created from studies of boys, led to the conclusion that girls, on average, reach 
a lower level of moral development. This research design is a little like giving 
students who speak French a test written in Japanese and concluding that French 
speakers are, on average, less articulate than Japanese speakers.18

And if all that is not enough, Anderson is actually quite wrong about what 
happens when we have more and more data, and more and more powerful com-
puters. The GIGO problem actually gets much worse when we use statistics on 
Big Data. For reasons we’ll discuss later, Little Data is not the same as Big Data 
from a statistical point of view. Analyzing 100 or 1,000 pieces of data presents 
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different issues and problems than analyzing 100,000 or 100 million pieces of 
data—and not just because it takes longer. Sadly, not everyone who uses data 
mining understands the pitfalls that Big Data presents.

There is an even more important lesson in the tomato/doll bed data, though. 
In a very real sense, these correlations are not any more or less simplistic than 
the data we saw earlier about Cassie’s road trip from Texas to Florida. Both tiny, 
invented examples illustrate how we analyze much more complex sets of data. 
Both were facts that could have been plucked from the stream of data that are 
recorded about us in our Star Trek-like world of ever-present computers. 

But they seem different. 
The difference is not about whether one example involved numbers and sta-

tistics and the other did not. Our analysis of Cassie’s data was about time and 
spatial location—not to mention the cost of gas—which are just as much about 
numbers as counting Lego bricks in a doll’s bed. We did not use statistics in 
Cassie’s simple example, but we could have. The difference is not that one analysis 
involved computers and the other did not. I used a computer in different ways, 
but I used a computer in both cases.

No, the difference between Cassie and the Doll Beds (which would make a 
great name for a punk band, by the way) is that one of these analyses made sense 
and the other did not. One turned data into information; the other turned data 
into confusion. That difference—between Cassie’s road trip and the meaningless 
correlation of tomato plants and doll beds, between finding a story and finding 
a pattern—is what this book is about. That is also, by the way, what data mining 
should be about.

The goal of this book is to lay out the conceptual and practical tools that dis-
tinguish Cassie from the Doll Beds: to create a set of techniques and concepts for 
sensibly analyzing Big Data. My approach to this challenge is to bring together 
the methods of ethnography and the tools of statistics to form a science of Quan-
titative Ethnography, and show how to use it to find meaningful insights from 
the hills and valleys of data through which we travel every day. 

Understanding people

In some ways it seems quite natural that we use quantitative tools—that is, 
statistics—to analyze Big Data. Computers collect Big Data, and computers are 
digital tools, which means by definition anything that can be stored in a computer 

18Introduction: Captain’s Log



can be represented by numbers. That basic fact seems obvious if we look at in-
formation like credit card numbers, or Social Security Numbers, or the $13.73 
Cassie spent on unleaded gasoline. It makes sense that the date Cassie bought the 
gas is stored as a number. Even Cassie’s name is actually recorded as a number: 
Each letter in the alphabet is stored as a number in the computer’s memory. 

But if Cassie takes a picture on her iPhone and sends it to a friend on Snapchat, 
the picture is stored as a string of numbers as well, at least until the picture is 
automatically deleted. Each pixel—each point in the picture—has a color value 
associated with it, and the computer represents each color value with a number 
from 0 to 16,777,216. So a 4x6 inch, high-resolution picture (say, 600 pixels per 
inch) is really just 8.6 million numbers. Actually that is not quite true. Many of 
the pixels in a picture will have the same color value, so to save space a computer 
will often record the color value once and then keep track of how many pixels 
in a row have the same value. But the basic point remains the same: names, 
addresses, prices, locations, images, music, videos, and even captain’s log entries: 
Everything in the world of Big Data is recorded as numbers, and thus can be 
analyzed mathematically.19 

So the “Quantitative” part of “Quantitative Ethnography” makes sense. But 
why “Ethnography”? A science that originated in studies of the traditional 
culture of African tribes and Pacific Islands may seem like an odd choice for 
making sense of our hyper-modern digital society. But in fact it is precisely 
because ethnography is the study of culture that it is a critical part of a sensible 
analysis of Big Data.

The term culture has many meanings, of course. Some definitions, like a collec-
tion of bacteria grown in a Petri dish, are obviously not relevant here. But neither 
is a definition that limits “culture” to a description of arts and literature: the 
songs, stories, and images—highbrow and low—that a group of people tell about 
themselves. Those things are part of a culture because they are part of how people 
understand the meaning of things that happen in their lives. But culture is about 
much more than just the arts.20 

Culture matters because while computers can mine in a mountain of data, 
human beings swim in a sea of significance. We traffic in symbols: in action, in 
talk, in writing, and in making things that mean something to ourselves and to 
others. The things people say and make and do are interpreted by others who 
share their culture, and ethnography is the science of understanding those inter-
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pretations. Culture is how people understand the meaning of things—and not 
just the meaning of things themselves, but the web of meanings that connect 
things to each other, and things to people, and thus ultimately connect us to one 
another. 

Culture is what makes data into information by adding meaning, and thus the 
“Ethnography” part of Quantitative Ethnography is as important as the “Quan-
titative” part in moving from Big Data to Big Information. We need a method 
for analyzing meaning to make sensible analyses of Big Data if we want to shed 
light on what people do and why. Put another way, the mountains of data that 
we see around us are more like a chain of islands in the middle of the cultural 
ocean of meaning. Ethnography is a way to chart that ocean, and Quantitative 
Ethnography is a way to use statistical tools to make better charts by finding 
landmarks amidst the mountains of data.

To do anything less—to pretend that the mountains of data do not exist in 
sea of cultural significance—may be mathematically rigorous, but in the end is 
conceptually empty. Or as Clifford Geertz, one of the best-known ethnographers 
of the last century, said succinctly: “Nor … have I been impressed with claims 
that structural linguistics, computer engineering, or some other advanced form 
of thought is going to enable us to understand men without knowing them.”21 

This is, of course, just a more rigorous way of saying that throwing shrimp at 
a wall is not a very good way to understand shrimp (or anything else, for that 
matter) no matter how big the wall is and how many shrimp you are able to 
throw. Understanding something—particularly something as complex and inter-
connected as human beings and the cultures in which they live—requires more 
sophisticated analysis than throwing things at a wall, or throwing data blindly 
into a statistical model. The data has to have meaning, which can only come, ulti-
mately, from knowing something about the people and situations being analyzed. 

Now obviously ethnography is not the only way to understand people by 
knowing them. But ethnography is a tool particularly well-honed for this chal-
lenge since its principal focus is the interpretation of cultural material. Ethnog-
raphy is the science of understanding how a system of symbols works—and more 
particularly how to find the meaning that people attach to things they say and 
do and make. But there are other methods for making sense of human endeavor: 
humanities like history, and literary analysis; other social sciences like sociology 
and psychology; and many other forms of meaning-based (the technical term 
is qualitative) data analysis. As a result, many of the principles and ideas that 
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are the foundation of Quantitative Ethnography will apply equally well to other 
approaches for making sensible interpretations of Big Data. 

One reason for starting with ethnography here is that when we combine 
ethnographic and statistical tools to analyze Big Data, we also get a larger set 
of tools for making sense of smaller data: the kind of data ethnographers, and 
historians, and journalists, and a host of other scholars use to study all manner 
of art, literature, and social interaction. Making meaning of Big Data gives us 
insight into how to use statistics to understand cultural material of all kinds, and 
the techniques of Quantitative Ethnography work quite well for Quantitative 
History, or Quantitative Journalism, or Quantitative Literary Analysis. 

But one of the most basic tenets of good ethnography is that it works best to 
move from the specific to the general rather than the other way around. For 
me—and hence for us here—those specifics are in the practices of ethnography, 
which is the form of cultural interpretation that I know best. 

In the end, though, this book is not about ethnography, any more than it is 
about statistics. We will look at some important statistical issues and discuss 
some of the important principles of ethnography—and of interpretive or qualita-
tive research in more generally. But fundamentally this book is about how to use 
ethnographic techniques to guide statistical analyses of Big Data. At the same 
time, it explores how to use statistical techniques to increase the scope and power 
of ethnographic and other qualitative methods of research.

This is a book about understanding why, in the digital age, the old distinctions 
between qualitative and quantitative research methods, between the sciences 
and humanities, and between numbers and understanding, limit the kinds of 
questions we can ask, in some cases, and lead us accept superficial answers in 
others. Quantitative Ethnography is a research method that goes beyond those 
distinctions to help us understand how to make sense of our increasingly da-
ta-rich world.

Going forward

The remainder of the book, then, fleshes out the key concepts, tools, and 
methods of Quantitative Ethnography in more or less in three parts. 

Before we can talk about integrating qualitative and quantitative approaches 
to research, we first have to look at the fundamental logic by which each method 
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operates. We cannot build a common language without understanding some-
thing of the individual ways of talking that it will bridge.

The first part of what follows, then—chapters 2, 3, and 4—looks at the foun-
dations of qualitative and quantitative methodologies. Chapter 2 lays out the 
basic concerns of ethnography: the issues that ethnographers think about, the 
kinds of data they use, the concerns they raise. Chapter 2 considers problems 
of bias and subjectivity, and how ethnographers frame those challenges in their 
work. Chapter 3 looks at the mechanics of ethnography: what ethnographers 
do, and the reasoning behind those practices. Chapter 3 covers concepts of thick 
description and coding, and how ethnographers develop, structure, and defend 
arguments about what people do and why. Finally, Chapter 4 takes on the same 
two tasks for quantitative methods. Chapter 4 looks at the concept of gener-
alization—how researchers use statistics to make claims about similarities and 
differences between groups—and focuses on the logic of sampling and statistical 
significance.

I have made this point already, and will make it many times in the pages to 
follow, but the goal of these chapters is, of course, not to pretend that one part 
of one book could cover all of the key ideas in two large, diverse, and complex 
fields. Rather, the goal is to lay out the basic frameworks of these two different 
research methods so we can begin the task of connecting them in Quantitative 
Ethnography. 

The second part of the book—chapters 5, 6, and 7—describes the key theories 
and practices that link quantitative and qualitative methods together. Chapter 
5 looks at how to organize qualitative data so that it can be analyzed using sta-
tistical tools. This question is pragmatic (How should the data be arranged in a 
file?) but more important, it is conceptual: What are the underlying structures of 
human interaction that we can use to organize the data? Chapters 6 and 7 take 
the basic quantitative process of constructing quantitative models and show how 
it can be applied to data that is organized using the approach described in chapter 
5. Again, this question is both practical (What are the components of a model?) 
and philosophical. The focus of chapter 6 is on the logic of modeling from a 
quantitative perspective. Chapter 7 looks at using that logic in an ethnographic 
context.
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The final part of the book looks at what it means to use statistical models to 
understand ethnographic data—and therefore to model how people make sense 
of the world. Again the approach is to consider both the theoretical implications 
of using statistics this way and also the mechanical details of how to actually 
do it. Chapter 8 focuses on how researchers identify what people mean as they 
talk and act, including questions of automated coding and reliability. Chapter 
9 looks at the structure of meaning-making, and how we can model the way 
people express their understanding about the world. The 10th and final chapter 
ties these strands together, and places Quantitative Ethnography in the context 
of other approaches to the analysis of Big Data.

Or at least that is what these chapters try to do. This book is very much written 
as an introduction to thinking about research in an age where the sheer volume of 
data strains the capabilities of methods developed when life was less thoroughly 
recorded. 

It is intended to be the first words for a reader interested in Quantitative Eth-
nography, not the last word on the field.

In fact, the book you have in your hands—or, more likely, on the screen—
comes from two main sources. The first is work done in my own research lab and 
in other labs by a number of very capable students and scholars over many years. 
I have mentioned some of these people specifically in the pages that follow, but 
there are many others who have contributed to my own understanding of Quan-
titative Ethnography in ways big and small. The particular words here—and all 
of the mistakes they contain—are my own. But I would be remiss if I did not 
point out that the ideas were, and continue to be, very much a collaborative effort.

The other source for the material in this book is a course I have taught for 
several years. My goal in writing this book has, in part, been to set out the funda-
mental concepts and practices of Quantitative Ethnography for those approach-
ing the subject for the first time. 

To help readers who are near the beginning of their research training—and 
perhaps others who may be helping train new researchers—I have included at the 
end of each chapter some suggestions for further reading and activities that may 
be helpful in seeing how to put concepts from the page into practice. These are, 
more or less, the same readings and activities that I use when teaching Quan-
titative Ethnography, but obviously these short sections can be skipped without 
losing the key points of each chapter.
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Finally, more technical papers about the ideas here are available online. In 
these pages, I have tried to write in a way that will be enjoyable and easy to 
read, while still being authoritative and accurate. My hope is that the result is 
an overview of Quantitative Ethnography that is accessible—and ideally even 
inspiring—to readers from many backgrounds.
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434 Notes

Chapter 1. Introduction: Captain’s Log

1.	 Cavorite, named for the fictional Dr. Cavor, is a metal that acted as a gravity shield, 
such that objects encased within it were freed from the inf luence of gravity.

2.	 For more on the inf luence of Star Trek on the mobile phone industry, see “Brain 
scan” (2009), “How Star Trek inspired an innovation” (2012), Handel Productions 
(2009), and Choney (2009). For information on James Bond’s technological 
contributions, see Dyce (2012).

3.	 For a list of Star Trek’s contributions, see Farrington (2009) and Handel Productions 
(2009). The place of the Enterprise in aviation history is discussed in Catlin (2015). 
The term “cyberspace” appeared first in Gibson (1982).

4.	 Linguistic purists will note that this is the first use I have made of the word data, 
which technically is plural: Data is a collection of pieces of data, each of which is 
technically called a datum. Thus it would be grammatically correct to write “data 
were” rather than “data was.” However, common usage refers to data as a collective 
noun rather than a plural—the team likes to speak in American English rather than 
the team like to speak in British English. So here and throughout I use singular 
verbs with data, not because I am ignorant of the difference, but because it sounds 
less affected to my ear as a writer. If you prefer “data were,” please feel free to set 
your universal translator accordingly. 

5.	 For more on the history of the Brownie camera, see Olivier (2007).

6.	 Schmidt’s estimate is described in Siegler (2010). The prevalence of cell phones is 
described in “Mobile phone access reaches three quarters of planet’s population” 
(2012). For benchmarks on information storage, see “How much is 1 byte, kilobyte, 
megabyte, gigabyte, etc.?” (n.d.). More on social media statistics can be found in 
Newcomb (2016).

7.	 For more on Facebook manipulation, see Popkin (2014).

8.	 The Twitter ransom is described in Gayomali (2014).

9.	 The idea that information is the combination of data and meaning comes from 
(Devlin, 1995).

10.	For more on the relationship of height and weight, see Eknoyan (2008).

11.	In making the comparison to Juster’s Half Boy, I do not mean to trivialize 
Quetelet’s contribution to science, which is in some ways far greater—and far more 
problematic—than most people realize. Based on the work of Quetelet and his 
contemporaries, medicine transformed over the course of the 19th century from a 
practice based on what is natural (patients are evaluated against their prior selves) to 
what is normal (patients are evaluated against the distribution of patients). For more 
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on Quetelet’s work, see Quetelet (1835), Hacking (1990), Hankins (1908), Tanner 
(1981). The Half Boy is from Juster (1961).

12.	For more on statistics and eugenics, see Hacking (1990), Norton (1978), Tanner 
(1981).

13.	Technically a correlation of r = 1 means that every time the height goes up or 
down by some amount—say, 1 inch—then weight goes up (or down) by some fixed 
amount—say, 1 pound. If height goes up 2 inches, weight goes up 2 pounds. If 
height goes down 5 inches, weight goes down 5 pounds. This means when the two 
values are graphed the relationship is a straight line.

14.	In the sample referenced is from Heinz, Peterson, Johnson, and  Kerk (2003). In 
their sample, correlation between height and weight is r = 0.72, but the sample 
consisted of “physically active individuals.” The overall correlation is probably closer 
to r = 0.50, and for Olympic athletes it may be as high as r = 0.77. See, for example, 
“SOCR Data Dinov 020108 HeightsWeights” (1993) and “Your Olympic athlete 
body match” (2012). Regardless, height alone is not actually a good predictor of 
weight. We can, however, get correlations very close to r = 1 if we include other 
body measurements.

15.	On the relationship between money and happiness, see Matthews (2013).

16.	The origins of GIGO are described in “World Wide Words: Garbage in, garbage 
out” (n.d.). 

17.	The quotation is from Anderson (2008).

18.	Gilligan’s landmark work can be found in Gilligan (1982).

19.	The form of image compression described here, sometimes known as duplicate string 
elimination, is only one of many techniques computer scientists have developed for 
reducing the storage requirements for data files. The subject is quite beyond the 
scope of this book, other than to point out that the amount of information a person 
can get from a data file is not always directly proportional to the size of the file, for 
the obvious reason that humans and computers process information differently. For 
those interested in the mathematics, a 4x6 inch image at 600dpi has 600 x 600 = 
360,000 pixels per inch. So the 24 square inches of the photo have 8,640,000 pixels, 
each of which is represented by a number.

20.	This point is made in Geertz (1973c) p. 30.

21.	The quotation is from Geertz (1973c) p. 30.


